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Abstract. Most available verification metrics for ensemble forecasts focus on univariate quantities. That is, they assess whether

the ensemble provides an adequate representation of the forecast uncertainty about the quantity of interest at a particular

location and time. For spatially-indexed ensemble forecasts, however, it is also important that forecast fields reproduce the

spatial structure of the observed field, and represent the uncertainty about spatial properties such as the size of the area for

which heavy precipitation, high winds, critical fire weather conditions, etc. are expected. In this article we study the properties5

of a new diagnostic tool designed for spatially-indexed ensemble forecast fields. The metric is based on a level-crossing statistic

that we term the fraction of threshold exceedance (FTE), and is calculated for the verification field, and separately for each

ensemble member. The FTE yields a projection of a – possibly high-dimensional – multivariate quantity onto a univariate

quantity that can be studied with standard tools like verification rank histograms. This projection is appealing since it reflects

a spatial property that is intuitive and directly relevant in applications, though it is not obvious whether the FTE is sufficiently10

sensitive to misrepresentation of spatial structure in the ensemble. In a comprehensive simulation study we find that departures

from uniformity of these so called FTE histograms can be indeed be related to forecast ensembles with biased spatial variability,

and that these histograms detect shortcomings in the spatial structure of ensemble forecast fields that are not obvious by eye.

For demonstration, FTE histograms are applied in the context of spatially downscaled ensemble precipitation forecast fields

from NOAA’s Global Ensemble Forecast System.15

1 Introduction

Ensemble prediction systems like the ECMWF ensemble (Buizza et al., 2007) or NOAA’s Global Ensemble Forecast System

(GEFS; Zhou et al., 2017) are now state of the art in operational meteorological forecasting at weather prediction centers

worldwide. One of the goals of ensemble forecasting is the representation of uncertainty about the state of the atmosphere at20

a future time (Toth and Kalnay, 1993; Leutbecher and Palmer, 2008), and verification metrics are required that can assess to

what extent this goal is achieved. For univariate quantities, i.e. if forecasts are studied separately for each location and each
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Figure 1. Simulated verification field and three associated forecast fields (arbitrary color scale) in which the spatial correlation length is

either the same as for the verification, 10% miscalibrated, or 50% miscalibrated. Can you tell which is correct?

forecast lead time, diagnostic tools like verification rank histograms (Anderson, 1996; Hamill, 2001) or reliability diagrams

(Murphy and Winkler, 1977) can be used to check whether ensemble forecasts are calibrated, i.e. statistically consistent with

the values that materialize.25

When entire forecast fields are considered, aspects beyond univariate calibration are important. For example, ensembles that

yield reliable probabilistic forecasts at each location may still over- or under-forecast regional minima/maxima if their members

exhibit an inaccurate spatial structure (e.g. Feldmann et al., 2015, their Fig. 6). For weather variables like precipitation, which

are used as inputs to hydrological forecast models, it is crucial that accumulations over space and time (and the associated

uncertainty) are predicted accurately, and this again requires an adequate representation of spatial structure and temporal30

persistence of precipitation by the ensemble.

There is an added difficultly for forecasters in that misrepresentation of the spatial structure of weather variables by ensemble

forecast fields may not be discernible by eye. For example, consider the simulated fields in Fig. 1: perhaps one of these forecast

fields has a clearly different spatial correlation length than the verification, but we suspect that even the sharp-eyed reader

cannot distinguish between the remaining fields with confidence. Even if the differences are obvious, a quantitative verification35

metric is required to objectively compare different forecast systems or methodologies.

Several multivariate generalizations of verification rank histograms such as minimum spanning tree histograms (Smith and

Hansen, 2004; Wilks, 2004), multivariate rank histograms (Gneiting et al., 2008), average-rank and band-depth rank histograms

(Thorarinsdottir et al., 2016), and copula probability integral transform histograms (Ziegel and Gneiting, 2014) have been

proposed and allow one to assess different aspects of multivariate calibration. They are all based on different projections of the40

multivariate quantity of interest onto a univariate quantity that can then be studied using standard verification rank histograms.

Unfortunately, most of these projections do not allow an intuitive understanding of exactly what multivariate aspect is being

assessed, and none are tailored to the special case where the multivariate quantity of interest is a spatial field. A recent paper

by Buschow et al. (2019) proposes a wavelet-based verification approach in which wavelet transformations of forecast and

observed fields are performed to characterize and compare the fields’ texture. The authors demonstrate that this approach is45
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able to detect differences in the spatial correlation length similar to those shown in Fig. 1. Our goal is similar but the approach

studied here is more in line with the idea of defining a projection from the multivariate quantity (here: a spatial field) to a

univariate quantity that can be analyzed via verification rank histograms. We are also more focused on the probabilistic nature

of the forecasts. That is, we are studying whether the forecasts adequately represent spatial variability as an ensemble.

The projection underlying the verification metric studied here is based on threshold exceedances of the forecast and obser-50

vation fields. This binarization of continuous weather variables is common in spatial forecast verification (see Gilleland et al.,

2009) as it allows one to study, for example, low, intermediate, and high precipitation amounts separately. In a recent paper,

Scheuerer and Hamill (2018) calculate the fractions of threshold exceedance (FTE) for all ensemble members and the verifying

observation field, and study verification rank histograms of the resulting univariate quantity in order to diagnose the advantages

and limitations of different statistical methods to generate high-resolution ensemble precipitation forecast fields based on lower55

resolution NWP model output. The FTE is an interpretable quantity that is highly relevant in applications where the fraction

of the forecast domain for which severe weather conditions are expected (e.g., heavy rain, extreme wind speeds, etc.) may be

of interest. However, it is not obvious whether FTE histograms are sufficiently sensitive to misrepresentation of the spatial

structure by the ensemble, and the goal of the present paper is to investigate this discrimination ability in detail.

In section 2, we describe the calculation of the FTE and the construction of the FTE histogram in detail. In section 3, a sim-60

ulation study is designed and implemented that allows us to analyze the discrimination capability of the FTE histograms with

regard to spatial structures. In section 4, we demonstrate the utility of FTE histograms in the context of spatially downscaled

ensemble precipitation forecast fields from NOAA’s Global Ensemble Forecast System. A discussion and concluding remarks

are given in section 5.

2 The fraction of threshold exceedance metric65

Let Z(s) be a scalar field on a domain s ∈D. Here, we describe a strategy of studying exceedances of Z at various thresholds.

That is, we focus interest in statistics based on 1{Z(s)>τ} for a given threshold τ ∈ R. In the domain D, we define the fraction

of threshold exceedance (FTE) as the fraction of all points at which τ is exceeded. Specifically, let

FTE(Z,τ) =
1
|D|

∫

D

1{Z(s)>τ}(s)ds

=
1
n

n∑

j=1

1{Z(s)>τ}(sj) (1)70

where the first equality represents the idealized continuous spatial process definition, while the second reflects the discrete

nature of spatial sampling in an operational probabilistic forecasting context with D = {s1, . . . ,sn}. The resulting univariate

quantity can be evaluated by common univariate verification metrics (Scheuerer and Hamill, 2018).

Suppose we have a k-member ensemble Z1(s), . . . ,Zk(s) and associated verification field Z0(s) (e.g., observation or analy-

sis) all onD; let π = {FTE(Z0, τ), . . . ,FTE(Zk, τ)}. Note that π depends on the threshold, but for ease of exposition we do not75

include this dependence in notation. We call r the rank of the verification FTE relative to the set of verification and ensemble
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forecast FTEs, or the rank of FTE(Z0, τ) in π. There are three cases of interest when computing r: (1) no ties exist in π, (2)

ties exist among a subset of π that includes FTE(Z0, τ), or (3) there is only one unique value in π. In the first case no special

action is required, and in the second case ties in rank are simply broken uniformly at random. The third case arises when all

ensemble members have the exact same FTE as the verification, as may occur e.g. when the precipitation amount reported by80

the verification and predicted by all ensemble members is below the threshold τ everywhere in D.

Gathering ranks over N instances of forecast/verification pairs, r1, . . . , rN , a natural way to communicate the rank behavior

is through a histogram that we term the FTE histogram over the k+ 1 possible ranks. In construction, the FTE histogram

is similar to the (univariate) rank histogram discussed in Anderson (1996) and Hamill (2001). That rank histogram, however,

evaluates the marginal distribution, or point-wise accuracy of the ensemble, and may be considered a first step in the verification85

procedure. Once the marginal distribution has been checked, the FTE histogram can be used to measure spatial calibration of

the ensemble. An ensemble that is spatially calibrated will exhibit the same effective correlation length as the verification (see

Fig. 1). As in the univariate case, flat FTE histograms are a necessary (but not sufficient!) condition for reliability as they

indicate that the verification and ensemble are indistinguishable with regard to the particular aspect of the forecast fields (here:

fraction of threshold exceedance) assessed by this metric. Assuming that calibration of the marginal distributions has already90

been confirmed, non-flat FTE histograms can be related to systematic differences in the spatial structure of the verification and

the ensemble forecast fields. If the correlation length of the ensemble fields is too large, a ∩–shaped histogram can be expected;

that is, verification ranks are centrally overpopulated because the larger correlation length of the ensemble makes it more likely

that if one grid point is above (below) the threshold, many of the grid points in its vicinity are also above (below) the threshold,

and thus the ensemble FTEs often take on very low or very high ranks. Conversely, a ∪–shaped histogram is taken as sign95

that the correlation length of the ensemble is too small, resulting in verification ranks becoming excessively populated to the

left or right as ensemble FTEs consistently take on intermediate ranks. We note that cases where π has only one unique value

(i.e., all forecast and verification FTEs are the same) are completely uninformative and can be discarded in calculating the FTE

histogram in order to avoid artificial uniformity.

While the FTE histogram is visually intuitive, a quantitative measure for studying departures from uniformity is desirable.100

Akin to Keller and Hense (2011), we summarize the FTE histogram, transformed to the unit interval, with two parameters from

a beta distribution. However, as histogram values only occur at discrete points in [0,1], parameter estimation methods will incur

some bias due to the lack of data on the interior of adjacent ranks. Thus, we stochastically disaggregate the (transformed) ranks

r1, . . . , rN to continuous values in [0,1]; see Appendix A for details. We then fit a beta distribution to the disaggregated ranks

by maximum likelihood. This provides a pair of succinct descriptive statistics in the form of the estimated shape parameters a105

and b, which respectively describe the behavior of the left and right sides of the histogram. In the ideal case, a and b are both

exactly one, indicating that the FTE histogram is perfectly uniform. In practice, these parameters are never exactly one. The

resulting set of possible parameter combinations and corresponding departures from uniformity are outlined in Table 1. With

parameters a and b, we have obtained an easily interpreted measure of spatial forecast calibration.

4

https://doi.org/10.5194/npg-2019-63
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 1. Possible departures from histogram uniformity, as characterized by beta parameter relationships.

Parameter Histogram

Relationship Interpretation

a= b= 1 Uniform

a,b < 1 ∪–shaped

a,b > 1 ∩–shaped

a < b Right-skewed

a > b Left-skewed

In summary, the FTE metric is composed of three steps: (1) calculate the FTE of each verification and ensemble forecast110

field, (2) construct an FTE histogram over available instances of forecast and verification times, and (3) fit beta parameters to

the stochastically disaggregated FTE histogram by maximum likelihood to characterize departure from uniformity.

3 Simulation study

In this section we consider an extensive simulation study to assess the ability of the proposed FTE histogram in diagnosing

mismatches between the correlation length of the forecast fields and that of the verification fields. It is not straightforward to115

define what a “correlation length” is in general for various meteorological quantities of interest such as precipitation and wind

speeds, especially given possible heterogeneity and spatial nonstationarity over the study domain. However, the effect of using

a threshold exceedance helps mitigate this problem. Consider a strictly positive and continuous variable Z(s) at two spatial

locations s= s1,s2 with possibly unequal continuous cumulative distribution functions F1 and F2, respectively. Rather than

considering a spatially-constant threshold such as 10 m/s for wind gusts, it is natural to consider a location-dependent threshold,120

say the 90% climatological quantiles q(s1) and q(s2) representing local characteristics. Then both quantities 1{Z(si)>q(si)} are

identically distributed Bernoulli(0.1) random variables, i= 1,2. Exploiting a standard Gaussian probability integral transfor-

mation method, we note that Φ−1(F (Z(si))) is a standard normal random variable, where Φ is the cumulative distribution

function of a standard normal. Thus, the original probability of threshold exceedance can be written

P (Z(si)> q(si)) = P (F (Z(si))> F (q(si))) = P (Φ−1(F (Z(si)))> Φ−1(F (q(si))) = P (X > Φ−1(0.9)) (2)125

where X is a standard normal. Thus, we have shown that a field of random variables with possibly distinct local probability

distribution can be transformed to Gaussian, and if we use local quantiles as the threshold then this is equivalent to a spatially-

constant threshold on the transformed variables. In our ensuing simulations studies we therefore consider stationary spatial

Gaussian processes as representing forecast and verification fields.

The main technical difficulty in setting up the simulation study is in generating multiple, stationary Gaussian random fields130

that have different correlation lengths while being correlated with each other. That is, we would like to generate Z0(s) and

Z1(s) in such a way that Cov(Z0(s),Z1(s))> 0 (representing that the forecast field is correlated with the verification field)

5

https://doi.org/10.5194/npg-2019-63
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



and where Z0 and Z1 have possibly distinct correlation lengths (representing that the forecast field is spatially miscalibrated).

A natural approach is to use multivariate random field models.

3.1 Multivariate Gaussian processes135

We call a vector of processes (Z0(s),Z1(s), . . . ,Zk(s)) a multivariate Gaussian process if its finite-dimensional distributions

are multivariate normal. We focus on second-order stationary mean zero multivariate Gaussian processes in that E(Zi(s)) = 0

for all i= 0, . . . ,k and s ∈D. Stationarity implies that the stochastic process is characterized by

Cij(h) = Cov(Zi(s+h),Zj(s)) (3)

which are called covariance functions for i= j and cross-covariance functions for i 6= j. Not all choices of functions Cij will140

result in a valid model, in particular we require that the matrix of functions C(h) = (Cij(h))ki,j=0 be a nonnegative definite

matrix function, the technical definition of which can be found in Genton and Kleiber (2015).

There are many models for multivariate processes (Genton and Kleiber, 2015), and here we exploit a particular class called

the multivariate Matérn (Gneiting et al., 2010; Apanasovich et al., 2012). We rely on the popular Matérn correlation function

M(h|ν,a) =
21−ν

Γ(ν)

(
h

a

)ν
Kν

(
h

a

)
(4)145

where Γ is the gamma function, Kν is the modified Bessel function of the second kind of order ν. Parameters have interpreta-

tions as a smoothing (ν), and correlation length or spatial range (a). The multivariate Matérn sets

Cii(h) = σ2
iM(h|νi,ai), for i= 0, . . . ,k, (5)

and

Cij(h) = Cji(h) = ρijσiσjM(h|νij ,aij), for 0≤ i 6= j ≤ k. (6)150

In this latter equation, ρij ∈ [0,1] is the co-located cross-correlation coefficient. Interpretation of the cross-covariance parame-

ters requires spectral techniques (Kleiber, 2017).

3.2 Simulation setup

Simultaneously simulating the verification field Z0(s) and all forecast fields Z1(s), . . . ,Zk(s) is difficult due to the high-

dimensional joint covariance matrix. Instead, we approach simulations by jointly simulating the verification fields Z0(s) and155

the ensemble mean field, ZM (s) from a bivariate Matérn model. We then perturb the mean field with independent univariate

Gaussian random fields to generate an 11-member ensemble, k = 11.

The simulation setup follows a series of steps:

1. Generate Z0 and ZM , the verification and ensemble mean as a mean zero bivariate Gaussian random field with multivari-

ate Matérn range parameters a0, aM , and a0M =
√
a0aM , smoothness parameters ν0 = ν0M = νM = 1.5, and co-located160

correlation coefficient ρ0M = ω = 0.8.
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2. Generate 11 independent mean zero Gaussian random fields W1(s), . . . ,W11(s) with Matérn covariance having range

a= aM and smoothness ν = νM = 1.5.

3. The ensemble member fields Z1(s), . . . ,Z11(s) are constructed as

Zi(s) = ωZM (s) +
√

1−ω2Wi(s), i= 1, . . . ,11. (7)165

The third step implies that each field in the ensemble is a Gaussian process with mean zero, variance one, range aM , smoothness

νM , and univariate “forecast skill” controlled by the parameter ω (see Appendix B). Note that by choosing the co-located

correlation coefficient ρ0M = ω, the correlation between the verification and each ensemble member is ω2, the same as the

correlation between ensemble members themselves. That is, Cov[Zi,Zj ] = ω2 for i, j = 0 . . . ,11 when i 6= j (derivation in

Appendix C), and thus the ensemble forecasts are calibrated in the univariate sense.170

In this study, fields were constructed on a square grid [−20,20] with resolution 0.2. The simulation above was repeated

five-thousand times for each combination of

a0 ∈ {1,1.5, . . . ,3.5,4},

aM ∈ {0.5a0,0.6a0, . . . ,1.4a0,1.5a0},

for a total of seventy-seven parameters sets investigated. For each parameter set, we constructed FTE histograms from the five-175

thousand samples based on each of τ ∈ {0,0.5, . . . ,3.5,4}. That is, for a given a0 and aM we analyzed nine FTE histograms,

for a total of 693 histograms across all parameter sets.

3.3 Simulation analysis

The question of primary interest in this analysis is whether the FTE accurately identifies miscalibration of ensemble correlation

lengths.180

3.3.1 Illustrative examples of FTE histograms

First, we study the discrimination ability of the FTE in something of an exaggerated setting, where the miscalibration is

obvious. We choose the mean of the marginal distribution as the threshold (i.e. τ = 0) and a verification correlation length of

2 which we found to produce "realistic" fields on this grid. The correlation length ratio is the ratio of the ensemble correlation

length to that of the verification field. We study ensembles with too small of a correlation length using ratio 0.5 (Fig. 2, row185

A), correct correlation length using ratio 1.0 (Fig. 2, row B), and too large of a correlation length using ratio 1.5 (Fig. 2, row

C). FTE histograms are then constructed for these three sets of verification and ensemble fields with 5000 samples in each set.

This revealing example is depicted in Fig. 2 and behaves as described in Table 1, where the FTE histogram takes a ∪-shape

when the ensemble correlation length is too small, a ∩-shape when the correlation length is too large, and is approximately flat

when the ensemble fields have the same correlation length as the verification field.190
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Figure 2. Example binary exceedance verification field and a subset of ensemble fields with representative FTE histogram for threshold

τ = 0 found using 5000 samples. Dark blue regions indicate threshold exceedance. All verification fields have correlation length a0 = 2 and

ensemble fields have correlation length aM = 1,2,3 in rows A, B, and C respectively. FTE histograms are density histograms with a dotted

grey line y = 1 and estimated beta distribution parameters annotated.

While the FTE is able to correctly identify the obvious miscalibration of the ensemble for the scenario in Fig. 2, one could

likely draw the same conclusions by visual inspection and would not use the FTE for these fields in practice. However, ensemble

forecast models are not generally so grossly miscalibrated; though a true correlation length ratio does not exist in reality, the

theoretical ratio will often be much closer to unity. Therefore, the true utility of the FTE is realized when the miscalibration

is not so visually obvious. This more realistic example is illustrated in Fig. 3 where the above experiment is repeated using195

different correlation length ratios. In row A, the ensembles have ratio 0.9 and the resulting FTE histogram is still noticeably

∪-shaped. The ratio in row B is 1.0 which yields a flat FTE histogram. In row C, the ratio is 1.1 and the FTE is noticeably ∩-

shaped. Again, these results are consistent with Table 1, and we conclude that the FTE metric maintains accurate discrimination

ability even when ensemble members are only slightly miscalibrated.
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Figure 3. Same as Fig. 2, but ensemble fields have ranges aM = 1.8,2,2.2 in rows A, B, and C respectively.

Of course, one may often want to use a threshold parameter other than the mean of the marginal distribution. The choice200

of τ is somewhat application specific; for example, it can be chosen such as to focus on high precipitation amounts. Thus,

it is important that the FTE metric maintains discrimination ability for different choices of τ . For a visual example, the same

experiment depicted in Fig. 3 is repeated in Fig. 4, but with FTE histograms constructed using τ = 2 (equivalent to two standard

deviations from the mean in this case). When the ensemble fields have a correlation length that is slightly too small (row A),

the resulting FTE histogram is ∪-shaped and has a slight right-skew. When the ensemble correlation length is slightly too large205

(row C), the FTE histogram is ∩-shaped and left-skewed. Reassuringly, the FTE histogram remains flat when the ensemble

fields share the same correlation length as the verification fields (row B). While these results are in agreement with Table 1, the

effect of the threshold can be studied more generally using the estimated beta parameters.

3.3.2 Quantifying deviation from uniformity

Recall that we propose quantifying the shape of the FTE histogram by the pair of beta distribution parameters (a,b) that210

approximate its shape. When a= b= 1, the FTE histogram is perfectly uniform. How do these parameter values change as the
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Figure 4. Same as Fig. 3, but for threshold τ = 2.

Figure 5. Estimated beta distribution parameters of FTE histograms calculated over different thresholds for forecasts with low, even, and

high correlation length ratios.

threshold τ increases? Figure 5 shows that when the correlation length ratio is 1.0, the estimated beta distribution parameters

are both about 1 for every choice of τ , correctly indicating flat histograms. When the correlation length ratio is less than 1.0,
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Figure 6. Estimated beta parameters of FTE histograms for verification correlation length a0 = 1,3 and ensemble range aM varying from

0.5a0 to 1.5a0, with τ = 1.

the beta parameters are themselves generally less than 1, indicating ∪-shaped histograms. Conversely, when the ratio is greater

than 1.0, the beta parameters are themselves greater than 1, indicating ∩-shaped histograms. There is an interesting tendency215

toward unity in the beta parameters for high thresholds (i.e., τ greater than three standard deviations from the mean). This is

because the number of exceedances for high thresholds will often be zero. Since ranks are only discarded from the histogram

if all ensemble members and the verification field have the same FTE, the FTE histogram for high thresholds will be composed

largely of ranks resulting from ties broken uniformly at random. This results in a more deceptively uniform histogram which

is why the estimated beta parameters tend toward 1 for high thresholds.220

Another variable of interest in evaluating the FTE metric is the size of the domain to which the metric is applied. In our

simulation framework, making the domain larger or smaller while keeping the correlation length constant is equivalent to

keeping the domain size constant and varying the correlation length of the verification field. That is, for a fixed domain size, a

smaller correlation length mimics a “large domain” and larger correlation length mimics a “small domain.” Analyzing estimated

beta parameters over a range of correlation length ratios is then equivalent to studying the FTE metric’s utility for different225

domain sizes. For the domain used in this study, a correlation length of 1 is considered small and 3 is considered large. In

either case, Fig. 6 shows that the beta parameters estimated using the FTE metric quickly rise above or fall below unity when

the correlation length ratio is not 1.0 itself. The steep slopes around the correlation length of 1.0 in both cases indicate that the

FTE metric maintains good discrimination ability regardless of domain size.

We now turn attention back to our motivating figure (Fig. 1), which was created with verification correlation length a0 = 2.230

Forecast 1 exhibited the correct spatial structure (i.e., aM = 2), forecast 2 was incorrectly specified with correlation length aM

= 3, and forecast 3 was incorrectly specified with correlation length aM = 1.8. While it may be obvious that forecast 2 has

incorrect spatial structure, the structural difference between forecasts 1 and 3 is not so apparent. However, as demonstrated by

the analysis above (Fig. 2 – Fig. 4), these misspecifications are certainly identifiable using the FTE metric.
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4 Application to downscaling of ensemble precipitation forecasts235

Distributed hydrological models like NOAA’s National Water Model (NWM) require meteorological inputs at a relatively high

spatial resolution. At shorter forecast lead times (typically up to one or two days ahead) limited-area NWP models provide

such high-resolution forecasts, but for longer lead times only forecasts from global ensemble forecast systems like NOAA’s

GEFS are available. These come at a relatively coarse resolution and need to be downscaled (statistically or dynamically) to

the high-resolution output grid. Here, we use a combination of the statistical post-processing algorithm proposed by Scheuerer240

and Hamill (2015), ensemble copula coupling (ECC; Schefzik et al., 2013), and the spatial downscaling method proposed by

Gagnon et al. (2012) to obtain calibrated, high-resolution precipitation forecasts fields based on GEFS ensemble forecasts.

Does the spatial disaggregation method produce precipitation fields with appropriate sub-grid scale variability? This question

will be answered using the FTE-based verification metric discussed above.

4.1 Data and downscaling methodology245

We consider 6-hour precipitation accumulations over a region in the South-Eastern US between -91° and -81° longitude and 30°

and 40° latitude during the period from January 2002 to December 2016. Ensemble precipitation forecasts for lead time 66-h

to 72-h were obtained from NOAA’s second-generation GEFS reforecast dataset (Hamill et al., 2013) at a horizontal resolution

of ∼0.5°. Downscaling and verification is performed against precipitation analyses from the ∼0.125° climatology-calibrated

precipitation analysis (CCPA) dataset (Hou et al., 2014).250

In order to obtain calibrated ensemble precipitation forecasts at the CCPA grid resolution we proceed in three steps. First,

we apply the post-processing algorithm by Scheuerer and Hamill (2015) to the GEFS forecasts and upscaled (to the GEFS

grid resolution) precipitation analyses in order to remove systematic biases and ensure adequate representation of forecast

uncertainty at this coarse grid scale. The resulting predictive distributions are turned back into an 11-member ensemble using

the ECC-mQ-SNP variation (Scheuerer and Hamill, 2018) of the ECC technique. This variation removes discontinuities and255

avoids randomization that can occur when the standard ECC approach is applied to precipitation fields. Finally, each ensemble

member is downscaled from the GEFS to the CCPA grid resolution using a slightly simplified version of the Gibbs sampling

disagregation model (GSDM) proposed by Gagnon et al. (2012). To generate downscaled fields with spatial properties that vary

depending on the season, we rely here on a monthly calibration of the GSDM, rather than on meteorological predictors as in the

original model. The 15 years of data are cross-validated: one year at a time is left out for verification and the post-processing260

and downscaling models are fitted with data from the remaining 14 years. Repeating this process for all years leaves us with

15 years of downscaled ensemble forecasts and verifying analyses. See Fig. 7 for a visual reference.

4.2 Univariate verification

Before applying the FTE to investigate whether the spatial disaggregation used in the downscaling method produces precipita-

tion fields with appropriate sub-grid scale variability, we check the calibration of the univariate ensemble forecasts across all265

fine scale grid points. We study (separately) the months January, April, July, and October in order to represent winter, spring,
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Figure 7. Examples of different data fields for 6-hour precipitation accumulation on July 24, 2004. From left to right: coarse-scale GEFS

ensemble member, the same member downscaled to the analysis resolution, and the corresponding CCPA analysis.

Figure 8. Verification rank histograms (density) for downscaled fields at representative months with cases of fully tied ranks removed.

summer, and fall, respectively. Daily analyses and corresponding ensemble forecasts from each of these months are pooled over

the entire verification period and all grid points within the study area, and are used to construct the verification rank histograms

in Fig. 8. Note that grid points receiving the same rank for the observation and all forecast fields – for example, when there

is zero accumulation at a point for all fields – are withheld from the histogram to avoid artificial uniformity introduced by270

breaking ties in rank at random.

Recall that a calibrated forecast should yield rank histograms that are approximately uniform. Clearly, the rank histograms for

the downscaled forecast fields shown in Fig. 8 are not exactly uniform; there is a consistent peak in the higher ranks indicating

that the downscaled ensemble forecasts tend to underestimate precipitation accumulations, especially in fall and winter. This

bias could be an indication that either the post-processing distribution (gamma) or the disaggregation distribution (log-normal)275

are not perfectly suited to represent the respective forecast uncertainties. It may also be a result of a superposition of biases

in different sub-domains or for different weather situations. Univariate calibration in July - which happens to be a month with

more frequent precipitation in this region of the US - is relatively good, and while the histograms of other months show clear

departures from uniformity, there is at least no strong ∪– or ∩–shape to indicate significant dispersion errors. We thus continue
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with our analysis of the spatial calibration of the downscaled ensemble forecasts fields, keeping in mind though that some of280

the possible non-uniformity of FTE histograms in January, April and October could be due to univariate miscalibration.

4.3 Verification of spatial structure

In the remaining analysis, we employ FTE histograms to investigate the spatial properties of the ensemble forecast fields

obtained by the downscaling algorithm for the same representative months outlined above. Spatial variability of precipitation

fields depends on whether precipitation is stratiform or convective, and in the latter case also on the type of convection (local285

vs synoptically forced). The frequency of occurrence of these categories has a seasonal cycle, and it is therefore interesting

to study how well the downscaling methodology works in different seasons. The first step in computing the FTE is deciding

what value to use for the threshold. If the climatology varies strongly across the domain, it may be desirable to use a variable

threshold such as a climatology percentile. However, the South-Eastern US is a flat and relatively homogeneous region meaning

the precipitation accumulation patterns will not be affected as much by orography, and we therefore select a fixed threshold290

for constructing the FTE. Another advantage of this approach is that a fixed threshold has a direct physical interpretation;

here we use thresholds of 5mm, 10mm, and 20mm to study the spatial calibration of the ensemble for low, medium, and high

accumulation levels over the 6-hour window.

In Fig. 9, it is clear by visual inspection that the FTE histograms are all ∪-shaped to some extent, though the fitted beta

parameters highlight that the histograms are explicitly more uniform in the fall and winter months. In the spring and summer295

months (i.e., April and and July) the histograms reveal a clear under-dispersion in the ensemble FTEs at all analyzed thresh-

olds. Since we noted above that July (and, to a lesser extent, April) had the best univariate calibration, this would suggest

that the downscaled ensemble overestimates fine scale variability during the seasons with more convective events. This could

indicate that the calibration procedure of the GSDM downscaling method in Gagnon et al. (2012) struggles with selecting good

parameters that produce downscaled precipitation fields with just the right amount of spatial variability during the summer300

season with mainly (but not exclusively) convective precipitation. The FTE metric can thus provide valuable diagnostic infor-

mation that helps identify shortcomings of a forecast methodology. Indeed, in one of our current projects we seek to improve

the GSDM, with one objective being to calibrate the model such that the downscaled fields reproduce the correct amount of

spatial variability, in a flow-dependent fashion, using meteorological predictors such as instability indices and vertical wind

shear (Bellier et al., 2020).305

5 Conclusions

When forecasting meteorological variables on a spatial domain, it is important for many applications that not only the marginal

forecast distributions but also the spatial (and/or temporal) correlation structure is represented adequately. In some instances,

misrepresentation of spatial structure by ensemble forecast fields may be visually obvious; otherwise, a quantitative verification

metric is desired to objectively evaluate the ensemble calibration. The FTE metric studied here is a projection of a multivariate310

quantity (i.e., a spatial field) to a univariate quantity, and can be combined with the concept of a (univariate) verification rank
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Figure 9. FTE histograms for downscaled fields at different thresholds in representative months with estimated beta distribution parameters.

histogram to analyze the spatial structure of ensemble forecast fields. This idea has first been applied by Scheuerer and Hamill

(2018) to study the properties of downscaled ensemble precipitation forecasts, but an understanding of the general capability

of the FTE metric to detect misrepresentation of the spatial structure by the ensemble has been lacking as yet.

In this paper, we performed a systematic study in which we simulated ensemble forecast and verification fields with different315

correlation lengths to understand how well a misspecification of the correlation length can be detected by the FTE metric. To

this end, the metric was slightly extended and is composed of three steps: (1) calculate the FTE of each verification and

ensemble forecast field, (2) construct an FTE histogram over available instances of forecast and verification times, and (3)

fit beta parameters to the stochastically disaggregated FTE histogram by maximum likelihood to summarize departure from

uniformity. We have found that the FTE metric is capable of detecting even minor issues with the correlation length (e.g.,320

10% miscalibration) in ensemble forecasts, and this conclusion was consistent across a range of thresholds and domain sizes.

Applied in a data example with downscaled precipitation forecast fields, the FTE metric pointed to some shortcomings of the

underlying spatial disaggregation algorithm during the seasons where precipitation is to be driven by local convection.
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The FTE metric is relatively simple and thus enjoys an easy and intuitive interpretation. In particular, the estimated beta

distribution parameters can be compared according to Table 1 to obtain a simple objective summary of dispersion and bias in325

the ensemble forecast. While we have focused on verification rank histograms in the analysis of the univariate verification FTE

rank here, the same projection could also be used in combination with proper scoring rules. We believe that FTE histograms are

a useful addition to the set of spatial verification metrics. They complement metrics like the wavelet-based verification approach

proposed by Buschow et al. (2019) which has additional capabilities when it comes to analyzing aspects of the spatial texture

of forecast fields but is not primarily targeted at proper uncertainty quantification by an ensemble.330

Code and data availability. The code and data used for this study are available in the accompanying Zenodo repositories (code: https:

//doi.org/10.5281/zenodo.3592506, data: https://doi.org/10.5281/zenodo.3592495). The most recent version of the code can also be found in

JJ’s github repository (https://github.com/joshhjacobson/FTE).

Appendix A: Stochastic disaggregation of transformed ranks

The data vector of ranks R has discrete elements ri ∈ {1,2, . . . ,k+ 1} where k is the number of ensemble members. In order335

to disaggregate these elements to a continuous domain for use with maximum likelihood estimation, the following algorithm

is applied to each element ri:

1. Let di = (ri− 1
2 )/(k+ 1).

2. Simulate a (continuous) uniform random variable

U ∼ Uniform
(
di−

1
2(k+ 1)

,di +
1

2(k+ 1)

)
340

3. Set ri = Ui.

The effect of Step 1 is a mapping into [0,1], while Step 2 is the stochastic disaggregation to evenly-spaced uniform intervals

whose supports form a partition of unity of [0,1].

Appendix B: Ensemble members with standard Gaussian marginals

Suppose X and W are independent standard Gaussian random variables. Letting345

Z = ωX +
√

1−ω2W, ω ∈ [−1,1] (B1)
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we see E[Z] = 0 by linearity of the expectation operator, and

Var[Z] = Var[ωX +
√

1−ω2W ]

= ω2Var[X] + (1−ω2)Var[W ] (B2)

= 1350

using independence of X and W .

Appendix C: Derivation of an appropriate co-located correlation coefficient

Suppose Z0 and ZM are standard Gaussian random variables with Corr[Z0,ZM ] = ρ, and {Wi}ki=1 is a set of independent

standard Gaussian random variables, each independent of Z0 and ZM . Define

Zi = ωZM +
√

1−ω2Wi, i= 1, . . . ,k, ω ∈ [−1,1]. (C1)355

From Appendix B we have that each of Zi is again a standard Gaussian random variable. Then, for i 6= j, we see that

Cov[Zi,Zj ] = Cov(ωZM +
√

1−ω2Wi,ωZM +
√

1−ω2Wj)

= ω2Cov(ZM ,ZM )

= ω2

using pairwise independence of ZM ,Wi and Wj . Using a similar technique we see360

Cov[Z0,Zi] = ωρ. (C2)

Now let Z = (Z0,Z1, . . . ,Zk)′. Then,

Cov[Z] =




1 ωρ . . . . . . ωρ

ωρ
. . . ω2 . . . ω2

... ω2 . . . . . .
...

...
...

. . . . . . ω2

ωρ ω2 . . . ω2 1




(C3)

Setting ρ= ω is thus necessary (except for the trivial case where ω = 0) and sufficient for univariate probabilistic calibration

of the ensemble as this choice makes Z0 indistinguishable from Z1, . . . ,Zk.365
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